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A New Valence Tautomerism: Thermal Rearrangement 
of c/s-2-Vinyl-3-ethynyl Three-Membered Heterocycles 

Sir: 

In recent years, there has been a considerable interest in 
the Cope rearrangement of 2,3-divinyl1 and 2,3-diethynyl2 

three-membered rings. Our continuing interest in the ther-
molytic behavior of 1,5-enynes3ab and the recently published 
rearrangement of c£s-l-ethynyl-2-vinylcyclopropane,3c prompt 
us to report on our study of the valence isomerization of cis-
l-ethynyl-2-vinyloxirane (la) and cis-N-tert-butyl-2-ethy-
nyl-3-vinylaziridine (lb). 

The desired starting material la was prepared by treatment 
of 3,4-dihydroxy-l,5-hexenyne4 (erythro + threo) with 2 equiv 
of sodium hydride, and 1 equiv of p-toluenesulfonyl chloride 
in ether. A mixture ofew- and trans-la was obtained (52% 
yield, cis:trans 1:0.7) and separated by preparative vapor phase 
chromatography. Deuterated Ic was prepared by stirring la 
with BaO in a large excess of D2O.5 Aziridine lb was prepared 
conveniently by aminolysis of cis- la (46% yield), followed by 
cyclization of the intermediate threo amino alcohol6 with 
Ph3PCb at room temperature7 (31% yield). The structures of 
la,b were established by NMR spectroscopy.8 

Scheme I 

Thermal rearrangements were conducted in sealed tubes in 
inert solvents (C6H6, CCI4) over the temperature range 80-130 
0C. These reactions gave rise to a single product: cis-l-carb-
oxaldehyde-2-ethynylcyclopropane (3a) and iV-terf-butyl-
177-azepine (4), respectively, from c/s-la and cis-lb. The 
structure of cw-3a was established by its straightforward 
spectral characteristics: 1H NMR (60 MHz, C6H6, 5Me4si) 
O=5—4V6

3 9.22 (m, 1 H, H5), 2.02 (d, 1 H, J = 1.6 Hz, 
H1), 1.85-1.50 (m, 2 H, H4 and H3) 1.46-0.8 (m, 2 H, H6); 
13C NMR (15.08 MHz, CDCl3,5Me4si) 69.1 (d, C1), 81.0 (d, 
C2), 8.7 (d, C3), 27.7 (d, C4), 200.7 (d, C5), 14.4 (t, C6); IR 
(CHCl3, cm-'), 3200, 2100, 1705; MS (70 eV, m/e, rel in
tensity %) 94 (M+, 5), 65 (100), as well as by its facile con
version to trans-3a9 by thermolysis in a flow system10 at 350 
0C. 

The structural assignment of 4 was based on its 1H NMR 
spectrum (60 MHz, CCl4, O

-Me4Si) 5.87 (t, 2 H, H-C4), 5.30 
(d, 2 H, / = 7.5 Hz, H-C2) 4.95 (2t, 2 H, H-C3), 1.12 (s, 9 H, 
f-Bu); the ethylenic part of the spectrum is very similar to that 
of 7V-carbalkoxy-l//-azepines.u The 13C NMR spectrum 
(15.08 MHz, CDCl3,<5Me4si) 26.5 (methyls) 52.4 (quater, C) 
114.4, 132.1, and 135.8 (C2, C3, and C4) confirmed this 
structural assignment. 

The rearrangement of la is stereospecific and follows a clean 
first-order rate law12 (up to 70% reaction) with respect to 
starting material. The calculated rate constants (XlO3 mn) 
were determined by least-squares analysis of the experimental 
data: A:(102°.8) = 2.70, A:(l 10°.5) = 5.64, A:(113°.6) = 7.83, 
k(l 16°8) = 10.58, /t(120°6) = 14.61, fc(130°6) = 29.10. The 
activation parameters (AH* = 25.1 ± 1.7 kcal mol~', AS* = 
- 3 ± 3 eu) are compatible with a Cope rearrangement. The 
enthalpy of activation for this rearrangement is only 2.4 kcal 
mol-1 higher than that for the rearrangement of cw-divin-
yloxirane.11 

The following mechanism (Scheme II) is proposed to ac-

Scheme II 
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count for this new thermal isomerization. In the first step, a 
highly strained seven-membered heterocycle 2a is formed via 
a [3,3]sigmatropic rearrangement of la. This species may ei
ther give 3a or return to la by means of [3,3]sigmatropic shifts. 
Since the estimated heat of formation of 3a (calculated by the 
method of Benson et al.'3) is ~19 kcal mol~' less than that of 
la, the reaction proceeds in the expected direction, i.e., Ia —• 
3a. In contrast to the isomerization of m-l-ethynyl-2-vinyl-
cyclopropane,3c no dimers14 were formed from the allenic in
termediate 2a. The above mechanism is supported by the 
analogous conversion of deuterated compound Ic to 3c. The 
structure of 3c is confirmed by NMR: the spectrum reveals 
only one cyclopropane hydrogen at 5 1.85-1.50; moreover, the 
signal of the acetylenic hydrogen appears as a singlet. 

Thermal rearrangement of lb to 3b should also occur since 
the heat of formation of 3b is estimated13 to be less than ~9 
kcal mol-1 that of lb. Nevertheless, only the formation of 4 
is observed when lb is heated at 90 0C for 20 min. A pathway 
consistent with this fact would be a 1,3-hydrogen shift from 
the proposed intermediate 2b. Since a thermal concerted 
1,3-shift is forbidden by the Woodward-Hoffman rules,15 we 
suggest that the hydrogen transfer occurs intramolecularly and 
is catalyzed by the nitrogen atom in 2b: one of the two allylic 
hydrogens is near the nitrogen atom, because the six centered 
transition state leading to 2b must generate a cis double bond. 
This hypothesis for the formation of the intermediate 2b is 
further supported by the fact that 4 is the only product formed 
when m-3b16 is subjected to flow pyrolysis10 at 350 0C.'7 

It may be asked why different pathways are observed when 
la and lb are submitted to pyrolysis. This can be attributed 
to the higher basicity of the nitrogen atom over the oxygen 
atom. 
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The Crystal Structure of the Mushroom 
Toxin jS-Amanitin1 

Sir: 

The deadly poisonous mushroom Amanita phalloides 
contains a number of cyclic peptides which can be classified 
as phallotoxins (heptapeptides), amatoxins (octapeptides), and 
antamanide, a decapeptide antagonist of the phallotoxins. The 
amatoxins cause death by destroying liver cells and damaging 
the secretory cells of the convoluted tubules in the kidney via 
inhibition of RNA polymerase II.2,3 Although the chemical 
sequences of these cyclopeptides have been determined, only 
antamanide has been subjected to a three-dimensional struc
ture analysis.4 

We wish to report the x-ray crystallographic structure de
termination of the amatoxin /3-amanitin, isolated and purified 
from American Amanita phalloides.5 /3-Amanitin (1), 
C39H53SO15N9, has the chemical sequence cyclo (L-a-as-
partyl-4-hydroxy-L-prolyl-4,5-dihydroxy-L-isoleucyl-6-hyd-
roxy-2-mercapto-L-tryptophyl-glycyl-L-isoleucyl-glycyl-L-
cysteinyl) cyclo(4 —»• 8)-5-oxide. The octapeptide ring is 
bridged through the sulfur atom of the sulfoxide form of cys
teine to the 2 position of the indole ring. The resulting bicyclic 
structure contains two 18-membered rings. 

Crystals were grown by slow evaporation from a 95% eth-
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